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Horizontal convection is non-turbulent
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Consider the problem of horizontal convection: a Boussinesq fluid, forced by applying
a non-uniform temperature at its top surface, with all other boundaries insulating.
We prove that if the viscosity, ν, and thermal diffusivity, κ, are lowered to zero,
with σ ≡ ν/κ fixed, then the energy dissipation per unit mass, ε, also vanishes in
this limit. Numerical solutions of the two-dimensional case show that despite this
anti-turbulence theorem, horizontal convection exhibits a transition to eddying flow,
provided that the Rayleigh number is sufficiently high, or the Prandtl number σ
sufficiently small. We speculate that horizontal convection is an example of a flow
with a large number of active modes which is nonetheless not ‘truly turbulent’ because
ε→ 0 in the inviscid limit.

1. Introduction
A key feature of the ocean and the stratosphere is that the solar irradiance forces

the fluid differentially in latitude and sets up strongly stable density stratification. This
situation is very different from the Rayleigh–Bénard paradigm, in which a fluid is
heated from below and cooled at the top. A more appropriate geophysical idealization,
suggested by Stommel (1962), is the experiment of Rossby (1965) illustrated in figure 1.
We follow Stern (1975) in referring to this flow configuration as ‘horizontal convection’.

Because the surface temperature is uneven, there are horizontal density and pressure
gradients and the fluid is in motion. Indeed, the critical Rayleigh number for the onset
of horizontal convection is zero: the smallest ∆T sets the fluid into motion. But in
the geophysical situation the Rayleigh and Reynolds numbers (denoted generically
by R) are enormous. In many situations, this statement is the prelude to a discussion
of turbulent flow. Yet we show below that Rossby’s experiment cannot become ‘truly
turbulent’, even if R → ∞. By ‘true turbulence’ we do not mean merely sensitive
dependence on initial conditions, or even the dynamics of many coupled modes. We
mean that the two experimental laws of fully developed turbulence apply (Frisch
1995). The first law requires a spectral cascade, as envisaged by Richardson. Our
main focus is however:

The law of finite energy dissipation: If, in an experiment on turbulent flow, all the
control parameters are kept the same, except for the viscosity, ν, which is lowered as
much as possible, the energy dissipation per unit mass behaves in a way consistent
with a finite positive limit.

The main implication of the law of finite energy dissipation is that the energy
dissipation per unit mass, Kolmogorov’s ε, is non-zero in the inviscid limit R →∞.

The law of finite energy dissipation is also known as the ‘zeroth’ law of turbu-
lence. Experimental evidence in support of it is provided by measurements of ε in
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Figure 1. A schematic illustration of horizontal convection. There is a small region of statically
unstable fluid indicated in the upper right corner, where heat is leaving the box. But over most
of the volume the stratification is stable, i.e. Tz > 0. The Rayleigh number is R ≡ gα∆TH3/νκ.
As an indication of the oceanographic parameter range take the depth of the layer as H = 1 km,
κ = 10−7 m2 s−1, ν = 10κ, and g′ ≡ gα∆T = 10−2 m2 s−1. Then R = 1020. The geophysical aspect
ratio is L/H ∼ 1000 and for water σ ≡ ν/κ ∼ 10.

grid-generated turbulence (Sreenivasan 1984). And Sreenivasan (1998) summarizes
the results of numerical simulations of homogeneous turbulence showing that ε is
independent of viscosity at large Reynolds number. On the other hand, experiments
by Cadot et al. (1997) – with Reynolds numbers of order 106 – show that the law
is violated for Taylor–Couette flow and in a flow driven by smooth counter-rotating
disks.

For horizontal convection the salient theoretical result, which we prove below, is:
The anti-turbulence theorem: If the only forcing is non-uniform heating applied at

the surface of a Boussinesq fluid and if the viscosity, ν, and thermal diffusivity, κ, are
lowered to zero, with σ ≡ ν/κ fixed, then the energy dissipation ε also vanishes.

The anti-turbulence theorem makes rigorous an earlier argument that surface
heating alone is not an effective mechanism for supplying energy to the ocean
circulation (Sandström 1908; Defant 1961; Houghton 1986). This result, often referred
to as ‘Sandström’s Theorem’, is based on thermodynamics and was not derived from
the fluid equations. In fact, as pointed out by Jeffreys (1925), Sandström’s argument
is flawed because it does not account for the molecular diffusion of heat. With the
anti-turbulence theorem, we see exactly in what light one can view Sandström’s result
as rigorous.

Munk & Wunsch (1998) used Sandström’s argument as a springboard for a dis-
cussion of the energy balance of oceanic turbulence. Munk & Wunsch argue that
the planetary-scale ocean circulation, estimated to provide an equator-to-pole heat
flux of 2 × 1015 W, is an incidental or passive consequence of a circulation which is
really driven by 2 × 1012 W of wind and tidal forcing. The anti-turbulence theorem
supports this conclusion: a hypothetical ocean circulation, driven only by surface
heating, could not exhibit the observed small-scale marine turbulence. Instead, the
wind and the tides must be the sources of turbulent power which enables the ocean
circulation to transport heat. In other words, the ocean circulation is not driven by
the difference in density between equator and pole; rather the circulation is a heat
and salt conveyor belt powered by wind and tides.



Horizontal convection is non-turbulent 207

2. Formulation

We consider a three-dimensional rotating fluid (Coriolis frequency f) in a rectan-
gular box. The vertical coordinate is −H < z < 0. At the top, z = 0, some pattern of
non-uniform heating and cooling is imposed by external forcing. There is no flux of
heat through the bottom, z = −H , or through the sidewalls. We use the Boussinesq
approximation and represent the density as ρ = ρ0(1−g−1b) where b is the ‘buoyancy’.
In more familiar notation b = gα(T − T0), where T is the temperature of the fluid
and T0 is a constant reference temperature. The Boussinesq equations of motion are

Du

Dt
+ ẑ × fu+ ∇p = bẑ + ν∇2u,

Db

Dt
= κ∇2b,

∇ · u = 0.

 (2.1)

The boundary conditions on the velocity u = (u, v, w) are u · n̂ = 0, where n̂ is the
outward normal, and some combination of no slip and no stress. We specify the
buoyancy on the top; an illustrative example used below is

b(x, y, 0, t) = bmax sin2(πy/L), (2.2)

with −L/2 < y < L/2.

We use an overbar to denote the horizontal average over x and y. If the solution is
unsteady we also include a time average in the overbar. In any event, we assume that
with sufficient time and space averaging, all overbarred fields are steady. Thus b̄ is a
function only of z. It follows from (2.1), and from the no-flux condition at z = −H ,
that

wb− κb̄z = 0. (2.3)

Thus there is no net vertical buoyancy flux through every level z = constant.

To measure the strength of horizontal convection we must define a suitable non-
dimensional measure. The familiar Nusselt number of the Rayleigh–Bénard problem is
not useful because from (2.3) the heat flux is zero. Instead we construct an alternative
index of the intensity of convection by first solving the conduction problem

∇2c = 0, (2.4)

using the same boundary conditions on c as on b. Then we define the non-dimensional
functional

Φ[b] ≡

∫
∇b · ∇b dV∫
∇c · ∇c dV

, (2.5)

where the integral is over the volume of the box. In physical terms Φ is the ratio of
entropy production in the convecting flow to the entropy production of the conductive
solution. One can show using a standard argument that Φ is always greater than unity.
In the numerical simulations of § 4 we use Φ as a global measure of the strength of
horizontal convection.



208 F. Paparella and W. R. Young

3. The anti-turbulence theorem
We denote the average over the volume of the box by angular brackets:

〈θ〉 ≡ V−1

∫
θ(x, y, z, t) dV = H−1

∫ 0

−H
θ̄(z) dz. (3.1)

Taking the dot product of the momentum equation in (2.1) with u and averaging over
the volume, one has

ε ≡ ν〈‖∇u‖2〉 = 〈wb〉, (3.2)

where ‖∇u‖2 ≡ ∇u · ∇u+∇v · ∇v+∇w · ∇w is the deformation, and ε is the mechanical
energy dissipation per unit mass; (3.2) shows that ε is supplied by the conversion of
potential energy into kinetic energy via the correlation in 〈wb〉.

Another expression for the buoyancy flux 〈wb〉 is obtained by averaging (2.3) over z:

〈wb〉 = κH−1[b̄(0)− b̄(−H)]. (3.3)

Eliminating the buoyancy flux 〈wb〉 between the kinetic energy integral (3.2) and the
potential energy integral (3.3) one then has

ν〈‖∇u‖2〉 = κH−1[b̄(0)− b̄(−H)]. (3.4)

The source on the right-hand side of (3.4) is bounded because the buoyancy in the
box must lie between the maximum and minimum values imposed at the surface (e.g.
Protter & Weinberger 1984):

b̄(0)− b̄(−H) < bmax. (3.5)

(As in (2.2), we suppose for convenience that bmin = 0.) Using inequality (3.5), equation
(3.4) implies that

ε ≡ ν〈‖∇u‖2〉 < κH−1bmax. (3.6)

Taking a limit κ → 0 (with bmax and H fixed) one concludes from (3.6) that ε → 0.
In particular, one also reaches this conclusion by taking the fixed-σ limit in which
all external parameters are fixed except that (ν, κ) → 0 with σ ≡ ν/κ constant. This
anti-turbulence theorem provides a rigorous foundation for both Sandström’s (1908)
thermodynamic argument and its recent applications in geophysics.

4. Numerical solutions
It follows from the zero-flux condition (2.3) that at z = 0, where w = 0, we have

b̄z(0) = 0. Consequently the vertical buoyancy gradient at the top, bz(x, y, 0, t), must
have both signs. This implies that the fluid is statically unstable (that is bz < 0)
beneath the point at which the surface buoyancy is a minimum. At this location
there is a plume which continuously fills the abyss with dense fluid. To balance
the downwards mass flux in the plume there is a large-scale upwelling which lifts the
deep dense fluid back to the surface. This flow towards the surface ensures that the
imposed non-uniform surface temperature penetrates diffusively only a small distance
into the fluid. In the limiting case σ = ∞, Rossby (1965) gives a scaling argument for
the thickness of this thermal boundary layer.

The numerical simulations of horizontal convection reported by Somerville (1967),
Beardsley & Festa (1972) and Rossby (1998) are consistent with the scenario described
above and further indicate that the flow is steady (e.g. the plume is laminar). Based
on these numerical results, and on Sandström’s argument, it has been concluded
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Figure 2. Numerical solutions of the two-dimensional Rossby problem obtained using the surface
temperature distribution (2.2); the plume is in the middle of the domain at y = 0, and R = 108.
The solid lines indicate the streamfunction and the shading shows the buoyancy (equivalently
temperature). Panel (a) shows a steady, stable circulation with Prandtl number σ = 10 (close to
that of water). Panels (b, c) show that a transition to unsteady flow occurs as σ is decreased at fixed
Rayleigh number, R ≡ bmaxH

3/νκ.

that horizontal convection must be steady and stable even as R → ∞ (e.g. Huang
1999; Wunsch 2000). This conclusion is also drawn in a recent textbook (chapter 1
of Houghton 1986), and considered as a relevant factor in determining the thermal
structure of the atmosphere of Venus.

Nevertheless, the conclusion that the flow is steady and stable as R → ∞ is a far
stronger claim than can be expected from the anti-turbulence theorem. This result
states only that uneven surface heating cannot provide net energy to the fluid in
the inviscid limit. The gap between the steady assumption and the anti-turbulence
theorem led us to undertake a suite of numerical simulations of the two-dimensional,
non-rotating (f = 0) version of Rossby’s problem.

We used the surface forcing function in (2.2) and solved the equations of motion
using the vorticity–streamfunction formulation with stress-free boundary conditions.
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Figure 3. To solve the two-dimensional problem we use the streamfunction (ψ)-vorticity (∇2ψ)
formulation for R = 108. The panels above show the vorticity, ∇2ψ, corresponding to figure 2(a–c).
Panel (c) shows the vortices generated by the instability of the plume.

The calculations are characterized by three non-dimensional parameters: the Rayleigh
number R ≡ bmaxH

3/νκ; the Prandtl number σ ≡ ν/κ; the aspect ratio H/L. All
simulations start from rest with a constant buoyancy (typically b(x, z, 0) = 0.5bmax),
and run till κt/H2 = 20. The resolution is 128 × 32 grid points for R = 106 or
less, and increases to 512 × 128 grid points for R = 108. The numerical code solves
the prognostic equations for buoyancy and vorticity on a staggered grid with a
second-order discretization, both in space and time. The elliptic problem for the
streamfunction is solved with a multigrid method.
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Figure 4. A suite of calculations at σ = 1; the curves are labelled by the Rayleigh number R. The
non-dimensional functional Φ is defined in (2.5) and the surface forcing function is defined in (2.2).
The run at R = 3× 106 is weakly unsteady as evidenced by a slight thickening of the curve.

The numerical results are at odds with the steady-flow scenario: the steady flow
set up by the surface forcing becomes unstable and evolves unsteadily at sufficiently
high Rayleigh numbers – see figures 2 and 3. The threshold for the transition
depends on both Rayleigh and Prandtl numbers: figures 2(a) and 3(a) show a steady
and stable flow which is similar to the results of Rossby (1998). But figures 2(b,c)
and 3(b,c) show that this flow becomes unsteady as the Prandtl number, σ ≡ ν/κ,
is decreased holding the Rayleigh number, R, fixed. A sequence of computations,
varying R with (σ,H/L) = (1, 1/4), is shown in figure 4. These computations indicate
that the transition to unsteady flow occurs at R ≈ 3 × 106. Figure 5 summarizes
a suite of calculations in which we located this transition in the (R, σ) parameter
plane.

Eddying flow has not been previously observed presumably because the earlier
numerical studies did not penetrate into the unstable portion of the (σ, L/H, R)
parameter space. The calculations reported here differ from earlier investigations
because: (i) we use higher Rayleigh numbers and smaller Prandtl numbers; (ii) the
aspect ratio is L/H = 4 in our case, and L/H = 1 in that of Rossby (1998); (iii) our
surface boundary condition in (2.2) moves the plume away from a sidewall and into
the middle of the container. Modifications (ii) and (iii) may lead to a destabilization
of the flow at lower Rayleigh numbers. We speculate that a transition to unsteady
flow will occur even in Rossby’s σ = 10 configuration provided that the Rayleigh
number can be increased sufficiently.

The anti-turbulence theorem in § 3 applies to the full three-dimensional Boussi-
nesq equations. On the other hand, the calculations in this section are of the two-
dimensional problem. These two-dimensional solutions are sufficient to refute the
view that horizontal convection is always steady and stable. Indeed, we expect that
the transition to eddying flow will occur at significantly lower Rayleigh numbers (and
probably via a different instability) in the three-dimensional case.
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Figure 5. The boundary between steady and unsteady solutions in the (R, σ)-plane. In all cases
L/H = 4 and the surface forcing function is defined in (2.2). The open circles indicate steady
solutions and the stars unsteady solutions. This stability boundary is for the two-dimensional
system: the three-dimensional system will transition at smaller Rayleigh number.

5. Conclusions and discussion
It is interesting to compare horizontal convection with the classical Rayleigh–

Bénard (RB) problem. For instance, does RB convection satisfy the law of finite energy
dissipation? Our arguments use the crucial result (2.3): in horizontal convection the
net vertical buoyancy flux is zero. But in the RB case the buoyancy flux is a non-
zero constant and this non-zero flux produces an additional contribution to the RB
analogue of the energy power integral in (3.4). For this reason clear-cut conclusions
concerning the inviscid limit of ε for the RB system cannot be reached using the
energy power integral alone. Instead, more elaborate variational arguments are called
for (e.g. Howard 1963; Busse 1969).

In astrophysics and geophysics an ultimate RB regime in which the vertical trans-
port of heat is independent of the molecular parameters ν and κ is often invoked
in mixing-length theories of turbulent transport. In terms of non-dimensional vari-
ables, the molecular parameters are irrelevant if and only if the RB Nusselt number
scales as R1/2 (Kraichnan 1962; Spiegel 1971; Siggia 1994). Any power-law scaling
for the RB Nusselt number with an exponent less than the ultimate exponent, 1/2,
implies not only that ν and κ are relevant for heat transport but also that the flow is
non-turbulent flow according to the criterion we have used in this work.

There are no laboratory experiments or numerical simulations which unambigu-
ously show that RB heat flux becomes independent of molecular parameters as
R → ∞. Indeed, Niemela et al. (2000) show that heat transport depends on the
molecular parameters for Rayleigh numbers as large as 1017. Thus the most recent
experimental evidence indicates that RB convection also violates the law of finite
energy dissipation.

There may also be other flows in which the law of finite energy dissipation is
weakly violated. Recent estimates suggest that ε might decay as some inverse power
of lnR for wall-bounded shear flows and convection. For example, Doering, Spiegel
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& Worthing (2000) indicate that turbulent shear flows with smooth walls might have
ε ∼ 1/(lnR)2 as R →∞ (see also Cadot et al. 1997). Logarithmically weak dependence
on R is difficult to detect experimentally and perhaps there are other ‘turbulent’ flows
in which ε vanishes slowly as R is increased. If such examples are common then the
definition of turbulent motion as demanding non-zero ε is too strict. In any event,
horizontal convection holds a special place amongst these examples because only in
this case do power integrals produce a constraint as forceful as (3.6).
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